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The trajectories of a passive tracer in a turbulent flow satisfy the ordinary dif-
ferential equation xŒ(t)=V(t, x(t)), where V(t, x) is a stationary random field,
the so-called Eulerian velocity. It is a nontrivial question to define the dynamics
of the tracer in the case when the realizations of the Eulerian field are only spa-
tially Hölder regular because the ordinary differential equation in question lacks
then uniqueness. The most obvious approach is to regularize the dynamics,
either by smoothing the velocity field (the so-called e-regularization), or by
adding a small molecular diffusivity (the so-called o-regularization) and then
pass to the appropriate limit with the respective regularization parameter. The
first procedure corresponds to the Prandtl number Pr=., while the second to
Pr=0. In the present paper we consider a two parameter family of Gaussian,
Markovian time correlated fields V(t, x), with the power-law spectrum. Using
the infinite dimensional stochastic calculus we show the existence and unique-
ness of the law of the trajectory process corresponding to a given field V(t, x)
for a certain regime of parameters characterizing the spectrum of the field.
Additionally, this law is the limit, in the sense of the weak convergence of mea-
sures, of the laws obtained as a result of any of the described regularizations.
The so-called Kolmogorov point, that corresponds to the parameters character-
izing the relaxation time and energy spectrum of a turbulent, three dimensional
flow, belongs to the boundary of the parameter regime considered in the paper.
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1. INTRODUCTION

The passive tracer model is used in statistical hydrodynamics to describe
transport of mass in a turbulent medium. It has, on the one hand, a very



simple formulation, on the other hand, it poses quite a challenge for a rig-
orous mathematical analysis. In the single particle case the trajectory of a
passive tracer is a solution of an ordinary differential equation

dx(t)
dt

=V(t, x(t)), x(0)=0, (1.1)

where V(t, x), (t, x) ¥ R × Rd, the so-called Eulerian velocity, is a d-dimen-
sional time stationary, spatially homogeneous random field.

In the above framework one implicitly assumes that the trajectory of
the process is indeed determined by (1.1), which requires an existence
and uniqueness result for the solutions of the equation, guaranteed, for
example, by the Lipschitz spatial regularity of V(t, x). On the other hand,
it has been long argued in the classical turbulence theory, see, e.g., ref. 1,
that in dimension 3 the Eulerian velocity field would have only Hölder
regular realizations (with Hölder exponent less than 1/3) in the limit of
infinite Reynolds numbers. However, real flows are always regularized at
small scales due to the presence of viscous effects. To describe this type of
regularization one can introduce the random field Ve(t, x) obtained from
V(t, x) by truncating the Fourier modes that correspond to the wave
numbers bigger than a certain cut-off level, say 1/e ( the so-called ultra-
violet cut-off ). Then Ve(t, x) is analytic in the spatial variable. One can
therefore define unambiguously xe(t) as the solutions of the ordinary dif-
ferential equation

dxe(t)
dt

=Ve(t, xe(t)), xe(0)=0. (1.2)

The multidimensional statistics of the trajectory can be then described by
the probability density functions (PDF)

Pe(x1,..., xN; t1,..., tN)=7D
N

i=1
d(xi − xe(ti))8 (1.3)

for all t1,..., tN ¥ R. Here O·P denotes the ensemble average over the reali-
zations of the Eulerian flow. The PDF that corresponds to (1.1) is given by

P(x1,..., xN; t1,..., tN) := lim
e Q 0+

Pe(x1,..., xN; t1,..., tN) (1.4)

if the limit on the right hand side of (1.4) exists. The limit of PDF-s could
be understood, e.g., in the weak sense. The existence of the limit in ques-
tion is far from being obvious because, as we have already mentioned, in
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the case of highly turbulent flow the right hand side of (1.1) does not
satisfy the classical uniqueness hypotheses. On the other hand, the property
described by (1.4) is quite fundamental if one wishes to define mathe-
matically sound model of turbulent transport in the regime of very large
Reynolds numbers.

Obviously, the regularization considered in (1.2) is not the only pos-
sible. Another regularizing effect comes from the molecular diffusivity. One
can consider the solution of the Itô stochastic differential equation

dxo(t)=V(t, xo(t)) dt+`2o db(t), xo(0)=0, (1.5)

where o > 0 is a (usually small) molecular diffusivity and b(t) is a
d-dimensional standard Brownian motion independent of V(t, x). Then,
due to the well known result of Veretennikov, see ref. 2, xo(t) is unam-
biguously defined as a strong solution to (1.5), even for Hölder continuous
drift V(t, x) and in analogy with (1.3) and (1.4) one can define

Pa(x1,..., xN; t1,..., tN) := lim
o Q 0+

Po(x1,..., xN; t1,..., tN) (1.6)

where

Po(x1,..., xN; t1,..., tN)=7Eb 5D
N

i=1
d(xi − xo(ti))68 (1.7)

and Eb is the expectation corresponding to averaging over the realizations
of the Brownian paths b(t). If we define the Prandtl number as Pr :=e/o

the limit of (1.4) corresponds to Pr=0, while the one of (1.6) to Pr=..
Besides of the fundamental question whether the limits of (1.3) and (1.6)
exist or not one can inquire also whether the PDF-s obtained by means of
both limiting procedures are identical, i.e.,

Pa(x1,..., xN; t1,..., tN)=P(x1,..., xN; t1,..., tN) (1.8)

for all x1,..., xN ¥ Rd, t1,..., tN ¥ R. If, the equality in (1.8) does not hold
one would have to complement the statement of the problem on determin-
ing the statistics of a solution to (1.1) from the law of the right hand side
V(t, x) by specifying the type of the regularization involved.

In the present paper we show the existence of the limits in question
and the equality (1.8) for a family of time stationary, spatially homoge-
neous zero mean Ornstein–Uhlenbeck, i.e., Gaussian and Markovian, fields
V(t, x). The detailed description of such a family is given in formulas
(1.9)–(1.11) later. In fact the existence of the limits in (1.4), (1.6) follows
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from the convergence of the laws of the respective stochastic processes
claimed in Theorem 1.1 later. To show this result one needs to prove
tightness of the laws of both o and e-regularizations (which is rather a
straightforward matter) and the uniqueness of a limiting law. The latter
fact follows from a stronger result, see Theorem 1.2 later, where we assert
the uniqueness of the law of a trajectory process satisfying (1.1). This also
implies the equality claimed in (1.8). Note that such a uniqueness result
fails to be true in general. An appropriate example for the Ornstein–
Uhlenbeck model considered here seems to be quite a nontrivial issue and
we do not have a result to present. However, such a nonuniqueness phe-
nomenon occurs for a two–particle process in the Kraichnan model, see
refs. 3–5, where it has been shown that for suitably selected parameters
(the intermediate compressibility regime of refs. 3 and 4) the e and o-regu-
larization limits are different.

As we have already mentioned in the foregoing we shall consider a
family of time stationary, spatially homogeneous zero mean Gaussian and
Markovian fields V(t, x) whose spectrum satisfies the power law, i.e., its
co-variance matrix is given by

R(t, x) :=OV(t, x) é V(0, 0) P=m1 F
Rd

e ix · k e−m2 |k|2c tE(k)
dk

|k|d − 1 , (1.9)

with m1, m2 > 0 and c \ 0. We assume that the energy spectrum E(·) of the
field is a nonnegative, symmetric matrix valued function given by

E(k)=˛f(|k|) 5B(d − 1)
k é k
|k|2 +A 1 I −

k é k
|k|2

26 if d \ 2;

f(|k|) if d=1.
(1.10)

Here f: [0, .) Q [0, .) is a bounded measurable function satisfying

f(r)=O(r1 − 2a) as r Q ., (1.11)

with a certain a > 1. The parameter a is related to the spatial regularity of
V(t, x). In fact, the velocity field has almost surely spatially Hölder con-
tinuous realization with any exponent s < a − 1, see Proposition 2.2 and
Remark 2.3. The parameters m2, c on the other hand determine the rate at
which the field decorrelates in time at distances of order 1/|k|, while the
parameter m1 determines the size of the fluctuations of the field. This class
of velocity fields plays an important role in statistical hydrodynamics and is
often used to model turbulent transport phenomena, see, e.g., refs. 6 and 7.
Of special significance are the fields whose spectrum in dimension d \ 3
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corresponds to c=1/3, a=4/3, due to the fact that for these values of
parameters they satisfy the Kolmogorov–Obukhov self-similarity hypoth-
esis for developed turbulence.

It is well known from the classical spectral representation theorem,
see, e.g., ref. 8, that there exist two independent identically distributed
Gaussian spectral measures V̂0(t, ·), V̂1(t, ·) such that

V(t, x)=F
Rd

[V̂0(t, dk) cos(x · k)+V̂1(t, dk) sin(x · k)].

The structure function of those measures is given by the relation

OV̂i(t, dk) é V̂iŒ(s, dkŒ)P=m1 di, iŒ d(k − kŒ) e−m2 |k|2c |t − s|E(k)
dk dkŒ

|k|d − 1 ,

with i, iŒ ¥ {0, 1} and the regularization of the field due to viscous effects
can be then mimicked by the field

Ve(t, x)=F
|k| [ 1/e

[V̂0(t, dk) cos(x · k)+V̂1(t, dk) sin(x · k)]. (1.12)

Our main results, that follow directly from a bit more abstractly for-
mulated Theorem 2.5 of Section 2, are stated in Theorems 1.1 and 1.2
below.

Theorem 1.1. For any e > 0 let Le be the joint law, in an appro-
priate path space, of the random element (Ve, xe), i.e., the pair consisting of
the e-regularization of the drift, given by (1.12), and the uniquely deter-
mined solution of (1.2). Suppose that the parameters c, a satisfy

2c+a > 2. (1.13)

Then, the laws Le converge weakly, as e Q 0, to a certain probability
measure L.

An analogous statement to the one formulated above holds also for
the convergence of the laws of o-regularizations described by (1.5).

An obvious consequence of the definition of weak convergence is that
for any random element (V, x) whose law coincides with L the process
(x(t))t \ 0 satisfies (1.1), a.s. over the respective probability space. The joint
limiting law of the trajectory process and the Eulerian velocity field is, in
some sense, unique. Namely, we have the following.
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Theorem 1.2. Suppose that c, a satisfy (1.13) and the Gaussian,
Markovian random field V(t, x) is defined by (1.9)–(1.11). Assume also
that x(t) satisfies (1.1) and is non-anticipative w.r.t. the natural filtration
corresponding to V(t, ·), t \ 0. Then, the law of the random element (V, x),
coincides with L.

An important physical ramification of Theorem 1.2 is the fact that in
the regime of large Reynolds numbers and for the values of parameters c

and a satisfying (1.13) the statistics of the sample trajectory of a tracer shall
not depend on the type of the regularizing effects involved. In particular, the
limiting laws corresponding to both o and e-regularization procedures must
coincide. Additionally, we note that the Kolmogorov point K=(4/3, 1/3)
lies precisely on the boundary of the region on the (a, c)-plane that is
determined by condition (1.13). We observe also that the aforementioned
condition determines the region of parameters for the validity of the
Gronwall inequality, that is crucial in our argument on the uniqueness
of the limiting law, see (4.5) and (4.6) later. This fact could potentially
indicate that the uniqueness of the law for the solution to (1.1) might fail
to be true if a+2c < 2. However, we do not have any rigorous result to
support this conjecture.

As we mentioned earlier Theorems 1.1 and 1.2 follow from Theorem 2.5
of Section 2 later. The proof of the latter is based on the observation that the
quasi-Lagrangian processes ge(t, ·) :=Ve(t, xe(t)+·), go(t, ·) :=Vo(t, xo(t)+·),
t \ 0 are stochastic processes that satisfy, in a certain sense, some Itô
stochastic partial differential equations. We show in Section 4 that the
solutions of those equations considered over an appropriate probability
space converge to a solution of a certain limiting stochastic partial differ-
ential equation. The weak convergence of the laws of the o and e-regu-
larizations are the consequences of the uniqueness result on the solutions of
the limiting equation, see Theorem 4.1.

At the end of this section we point out some differences between the
model discussed here and the so-called Kraichnan model, that has been widely
considered in the literature, see, e.g., refs. 9 and 10. In contrast with the
situation considered here, the Kraichnan flow is a white noise (d-correlated)
in time Gaussian field with the energy spectrum described by function E(k) as
given by (1.10) and (1.11). This corresponds to parameters m1=m2=+.

and c=0 in the Ornstein–Uhlenbeck flow considered here. In fact, it has
been shown in refs. 11 and 12 that in the regime considered in this article and
for m1=m2=r−2, one can obtain the law of a particle transported by a
Kraichnan flow as a limit, as r Q 0+, of the corresponding laws obtained for
a particle transported under Ornstein–Uhlenbeck flows with appropriately
defined ultraviolet cut-offs depending on r that tend to infinity, as r vanishes.
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The principal reasons why the Kraichnan model can be treated ana-
lytically are due to its Gaussianity and decorrelation in time. In fact, the
question of determining the joint law of the velocity and trajectory process
(for a single particle), that is the subject of the present paper, is quite
simple there with the answer independent of the limiting procedure (in
particular the law of a single trajectory is that of a Brownian motion).

According to ref. 10 the flow of particles determined by a spatially
irregular, white noise velocity displays a range of interesting phenomena
such as branching (intrinsic stochasticity) and coalescing (shock-wave
formation) of trajectories. The nature of the limiting flow depends on the
one hand on the compressibility coefficient, defined as P :=B/(A+B),
cf. (1.10). On the other hand, it is also sensitive of the choice of the limiting
procedure (either e, or o-regularization), see refs. 3 and 4 with additional
clarifications contained in ref. 5. An analogous question about the descrip-
tion of the particle flow could be raised in the context of considered here
velocity fields that display time correlations. This problem seems to be
significantly harder than in the case of the Kraichnan model. We note here
that certain non-rigorous results concerning this issue have been obtained
in ref. 9.

2. NOTATION AND THE MAIN RESULTS

For brevity we denote by Sd the space of all tempered test Rd-valued
functions S(Rd; Rd). Let L2

r be the Hilbert space consisting of all vector
fields k: Rd

Q Rd, for which the norm

||k||L2
r

:=F
Rd

|k(x)|2 Jr(x) dx

is finite. Here Jr(x) :=(1+|x|2)−r, x ¥ Rd, and r \ 0. We shall also denote
by O· , ·PL

2
r

the scalar product corresponding to the norm ||·||L2
r
. Next given

r ¥ [0, .) and s ¥ (0, 1) we write

Cr :={k ¥ C(Rd; Rd) : ||k||Cr
:=sup

x ¥ Rd
|k(x)|Rd Jr(x) < .},

Cs
r :=3k ¥ Cr : [k]C

s
r
= sup

x, y ¥ Rd, x ] y

|k(x) Jr(x) − k(y) Jr(y)|
|x − y|s

< .4 .

We equip Cs
r with the norm ||·||Cs

r
:=||·||Cr

+[·]C
s
r

and set C0
r :=Cr.
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Remark 2.1. Note that Sd is not dense in Cr in ||·||Cr
-norm.

However, it is dense in any ||·||Ch
-norm with h > r. Note that Ch … L2

r

(is continuously embedded) provided that r − 2h > d/2.

We assume that V(·) is an infinite-dimensional Ornstein–Uhlenbeck
process being a stationary solution to the following stochastic equation

dV(t)=−AV(t) dt+B dW(t). (2.1)

Here W is a cylindrical Wiener process on L2 :=L2(Rd; Rd) defined over a
filtered probability space A=(W, F, (Ft)t \ 0, P), see, e.g., ref. 13. We shall
denote the expectation w.r.t. probability P by O·P. A and B are pseudo-
differential operators

Ak5 (k)=m2 |k|2c k̂(k), Bk5 (k)=`2m1m2 |k|c+(1 − d)/2 E1/2(k) k̂(k), k ¥ Rd,

with c \ 0. Notice that the operator − A with the domain

D(A)=3k ¥ L2 : F
Rd

|k̂(k)|2 |k|4c dk < .4

generates a C0-semigroup of self-adjoint operators (S(t))t \ 0 on L2. Process
W(·) does not live in L2. It takes values in any Hilbert space H such that
L2 … H with a Hilbert–Schmidt imbedding. Given c \ 0 we set G(c)=c if
c ¨ Z and +. otherwise. Assume that r ¥ (d/2, d/2+G(c)). Then, see part
(ii) of Proposition 2, (14) (S(t))t \ 0 has a unique extension, that we denote by
the same symbol, to a C0-semigroup on L2

r. Moreover, see ref. 14, Appen-
dix A, given t > 0, S(t) B extends to a Hilbert–Schmidt operator from L2

to L2
r. Thus, we can treat (2.1) as a stochastic evolution equation in L2

r-space,
see, e.g., ref. 13. The following proposition gathers results proven already
in ref. 14, Sections 2.2 and 2.3.

Proposition 2.2. Let r ¥ (d/2, d/2+G(c)). Suppose that z is an
F0-measurable, L2

r-valued, of zero mean, normally distributed random
element with spatially homogeneous law, whose co-variance operator S is
given by

Sk5 (k) :=`m1 |k| (1 − d)/2 E1/2(k) k̂(k), k ¥ Rd, k ¥ Sd.

Then, there is a unique solution V(·) to (2.1) satisfying V(0)=z. It defines
a space-time stationary Gaussian random field with jointly continuous
realizations and the co-variance matrix given by (1.9) and (1.10). More-
over, for an arbitrary h > 0 and 0 [ s < a − 1, V(·) has almost surely con-
tinuous Cs

h -valued trajectories.
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Remark 2.3. Let V(·) be a stationary solution and let f be a func-
tion introduced in (1.10). Assume that a > 1 is such that the estimate (1.11)
is sharp, that is there are R < . and f0 > 0 such that f(r) r2a − 1 \ f0 for
r \ R. Then, it is easy to see that there is a constant c > 0 such that the
co-variance matrix R(t, x) of the respective Gaussian random field V(t, x),
(t, x) ¥ R × Rd (cf. (1.9)) satisfies

-x: |x| [ 1,
1
c

|x|2a − 2 [ |R(t, x) − R(t, 0)| [ c |x|2a − 2. (2.2)

Assume that almost all realizations of V(t, ·), t \ 0 are spatially Hölder
continuous with an exponent s. As a result of (2.2) we have necessarily,
s ¥ (0, a − 1). In particular, if a < 2, then V(·) does not have Lipschitz
continuous realizations.

Definition 2.4. By a weak solution to (1.1) we mean any triple
(A, V(·), x(·)) consisting of a filtered probability space A, a stationary
solution V(·) to (2.1) driven by an (Ft)-adapted cylindrical Wiener process
over A, and a measurable (Ft)-adapted process x: W × [0, +.) Q Rd such
that for any t \ 0,

x(t)=F
t

0
V(s, x(s)) ds, P-a.s. (2.3)

Let T > 0, and let t be any stochastic process with continuous trajec-
tories in Rd or C(Rd; Rd). By LT(t) we denote its law in the appropriate
space C([0, T]; Rd), or C([0, T]; C(Rd; Rd)). Finally L(t) shall denote its
law in the space corresponding to the infinite time interval.

From the Veretennikov results on the existence and uniqueness of a
solution to stochastic differential equations with a nondegenerate drift, see,
e.g., ref. 2 one can easily deduce the existence and uniqueness of a strong
solution xo(·) to (1.5) with any o > 0. These solutions shall be also referred
to as the o-regularization of the trajectory process.

The e-regularization procedure starts with the regularization of the
Eulerian velocity field. Let z be as in Proposition 2.2, i.e., a zero mean,
spatially homogeneous, Gaussian random element. There exist then, see
ref. 8, two Rd-valued, independent, Gaussian spectral random measures ẑ0,
ẑ1 defined over (Rd, B(Rd)) such that

z(x)=F
Rd

[cos(k · x) ẑ0(dk)+sin(k · x) ẑ1(dk)], x ¥ Rd. (2.4)

Transport of a Passive Tracer by an Irregular Velocity Field 1369



Let r ¥ (d/2, d/2+G(c)). For any e > 0 the e-regularization of V(·),
denoted by Ve(·), is the stationary solution of

dV(t)=−AV(t) dt+Be dW(t), (2.5)

where

Bek
5(k)=`2m1m2 1[|k| [ 1/e](k) |k|c+(1 − d)/2 E1/2(k) k̂(k), k ¥ Rd,

and the initial value Ve(0)=ze is an F0-measurable Gaussian, L2
r-valued

random element given by

ze(x)=F
|k| [ 1/e

[cos(x · k) ẑ0(dk)+sin(x · k) ẑ1(dk)],

with ẑ0, ẑ1 spectral measures appearing in (2.4). Note that the random field
ze(·) is of zero mean with the co-variance operator given by

Sek
5 (k) :=`m1 1[|k| [ 1/e](k) |k| (1 − d)/2 E1/2(k) k̂(k), k ¥ Rd, k ¥ Sd.

By virtue of Proposition 2.2, Ve determines a random field that is space-
time continuous, Lipschitz regular in the space variable (in fact even real
analytic), and with a sub-linear growth. Therefore, for any e > 0, (1.2) has
a unique measurable adapted solution xe(·), called the e-regularization of
the trajectory process.

The main result of the present paper is the following theorem on the
existence and uniqueness of a weak solution.

Theorem 2.5. Assume that a+2c > 2. Then, there exists a weak
solution (A, V(·), x(·)) to (1.1). For arbitrary two weak solutions
(A, V(·), x(·)) and (Aa , Va(·), x̄(·)) one has L(V, x)=L(Va, x̄). Moreover,
we have also the convergence of the joint laws L(V, xo) 2L(V, x), as
o Q 0, and L(Ve, xe) 2L(V, x), as e Q 0.

We conclude this section with a series of remarks which pertain to
certain questions related to the notion of weak solution introduced in
Definition 2.4.

Remark 2.6. Let (A, V(·), x(·)) be the weak solution in the sense of
Definition 2.4. By V we denote the s-algebra of events generated by V(·).
The question is whether the process x(·) is V-measurable. If so, then the
law of x(·) conditioned on V is a trivial measure for P-a.s. realization of
V(·). If this is not the case we say that the solutions to (1.1) have the
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property of intrinsic stochasticity. We do not know whether in the regime
considered in Theorem 2.5 the solutions have this property or not. The
answer seems to be beyond the scope of our present approach, based on
the analysis of the regularized a trajectory process corresponding to the
motion of a single particle. What is likely needed is some insight into the
behavior of at least two particle system. The obstacle to our approach in
that case is the fact that the corresponding two particle analogue of the
quasi–Lagrangian process introduced in Section 3 is not Markovian and we
cannot apply then tools of the infinite dimensional stochastic calculus.

Remark 2.7. Below we formulate a condition that guarantees that
the trajectory process is deterministic, when conditioned on the informa-
tion about the drift.

Definition 2.8. We say that the solutions of (1.1) satisfy the path-
wise uniqueness condition (PUC) if, given a filtered probability space A,
a stationary solution V(·) to (2.1) driven by an (Ft)-adapted cylindrical
Wiener process over A, there exists at most one, up to stochastic equiva-
lence, (Ft)-adapted process x: W × [0, +.) Q Rd such that (2.3) holds.

Indeed, assume that PUC does not hold. Then one could find a
filtered probability space A, a stationary solution V(·) and two nonequi-
valent processes x(·), x̄(·) satisfying (2.3). Using these processes one can
define a weak solution (A2 , V2 (·), x̃(·)) that is intrinsically stochastic. Let np

be the Bernoulli measure on {0, 1} with the success probability p ¥ (0, 1).
Define A2 as the filtered probability space corresponding to W̃ :={0, 1} × W,
P2 :=np é P, (F2 t) is the obvious filtration related to (Ft) and F2 is the
product s-algebra. Set V2 (t; E, w) :=V(t; w), (E, w) ¥ W̃, x̃(t; 0, w)=x̄(t; w),
x̃(t; 1, w)=x(t; w). It is clear that (A2 , V2 (·), x̃(·)) is a weak solution, how-
ever the conditional law of x̃(·) on V2=s(V2 ) equals p dx(· ; w)+(1 − p) dx̄(· ; w).
Since P(x(·) ] x̄(·)) > 0 it is not a d-type measure.

On the other hand, suppose that PUC holds and w W mw is the con-
ditional law of x(·) onto V(·) for a given weak solution (A, V(·), x(·)).
Then nw :=mw é mw defines a random measure on X×X, where X :=
C([0, +.); Rd). Define a filtered probability space A2 by W̃ :=W ×X×X,
F2 t :=Ft é Ct é Ct, t \ 0, P2 (dw, dp1, dp2) :=P(dw) é nw(dp1, dp2) and set
x(t; w, p1, p2) :=p1(t), x̄(t; w, p1, p2) :=p2(t). For P2 -a.s. realizations of
(w, p1, p2) both processes x(·), x̄(·) satisfy (2.3). Hence, thanks to PUC,
we have p1=p2, P2 -a.s. but this immediately implies that mw is of d-type for
P-a.s. w. From the above we conclude that the pathwise uniqueness condi-
tion implies triviality of the trajectory law conditioned on the information
about V(·).
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Remark 2.9. It is unclear whether the pathwise uniqueness condi-
tion of Definition 2.8 implies the uniqueness of the law of a weak solution
of Definition 2.4. For that purpose we would have to strengthen PUC
stating, e.g., that x(·) considered there must be of the form F(V(·)), where
F: C([0, +.); Cr) QX is a certain fixed measurable functional. Such a
condition could be called, after Definition 4.1.6, p. 149 of ref. 15, the strong
uniqueness condition (SUC). It is not immediately clear whether SUC is
implied by PUC, although we should mention that the respective implica-
tion holds for solutions of stochastic differential equations, see, e.g.,
Corollary p. 152 of ref. 15 and also Corollary 4.5 later.

3. QUASI-LAGRANGIAN PROCESS

Our approach is based on the notion of the quasi-Lagrangian process,
which roughly speaking describes the medium from the point of view of the
moving particle. Assume that (A, V(·), x(·)) is a weak solution to (1.1).
The corresponding quasi-Lagrangian process is defined by

g(t, x) :=V(t, x(t)+x), x ¥ Rd, t \ 0. (3.1)

The respective processes corresponding to the o and e-regularizations are
given by

go(t, x) :=V(t, xo(t)+x) and ge(t, x) :=Ve(t, xe(t)+x), x ¥ Rd, t \ 0.

Clearly, for t \ 0 we have

x(t)=F
t

0
g(s, 0) ds, xo(t)=F

t

0
go(s, 0) ds+`2o b(t),

xe(t)=F
t

0
ge(s, 0) ds.

(3.2)

We derive a stochastic partial differential equation that is satisfied, in a
certain sense, by the quasi-Lagrangian process go, see also Theorem 1 from
ref. 14. Before formulating it we need some more notation. Given r we
write

S(r) :={k ¥ Sd : 0 ¨ supp kJr
5 }.

Let b(·) be a standard d-dimensional Brownian motion given over a
certain filtered probability space Ab=(Wb, Fb, (Fb

t ), Pb). We let A é Ab
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be the filtered probability space (W × Wb, A é Ab, (Ft é Fb
t ), P é Pb).

Furthermore, denote by O· , ·P the scalar product on L2, or its extension to
the bilinear form on S −

d ×Sd.

Theorem 3.1. Let o \ 0, r ¥ (d/2, d/2+G(c)), A be a filtered
probability space. Assume further that W(·) is an adapted cylindrical
Wiener process and VX(·) is a solution to (2.1) with an F0-measurable
initial condition X being a random element in L2

r. Suppose that
y: W × Wb × [0, +.) Q Rd is measurable, (Ft é Fb

t )-adapted, continuous
in t, and such that for P-a.s. w ¥ W it satisfies

dy(t)=VX(t, y(t)) dt+`2o db(t), y(0)=0. (3.3)

Set gX(t, x)=VX(t, y(t)+x), x ¥ Rd, t \ 0.
Then, there is a cylindrical Wiener process W(·) on A é Ab, indepen-

dent of b(·) such that for all k ¥ S(r) and t \ 0, P é Pb-a.s.,

OgX(t), kPL
2
r
=OX, kPL

2
r

+F
t

0
[OgX(s), J−r( − A+oD)(Jrk) − J−rgX(s, 0) · N(Jrk)PL

2
r
] ds

+F
t

0
[OB dW(s), kPL

2
r

−O`2o J−r db(s) · N(Jrk), gX(s)PL
2
r
].

Here, given a vector v ¥ Rd, the symbol v · N denotes the directional deriva-
tive in the direction of v.

Remark 3.2. In the above theorem we assume that there is a solu-
tion to (3.3). Obviously, if o=0 and VX(· , ·) is not Lipschitz continuous in
x the existence of a solution to (3.3) could be a nontrivial issue.

Proof of Theorem 3.1. Let k ¥ S(r). Set j=Jrk. Then

OgX(t), kPL
2
r
=OgX(t), jP=OVX(t, ·), j(· − y(t))P.

By Itô’s formula we have

dj(· − y(t))

=−[VX(t, y(t)) dt+`2o db(t)] · Nj(· − y(t))+oDj(· − y(t)) dt.
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Thus, as W(·) and b(·) are independent and A and B commute with the
group of spatial shifts, (2.1) yields

OgX(t), kPL
2
r
=OX, kPL

2
r
+F

t

0
OgX(s), ( − A+oD) j − gX(s, 0) · NjP ds

− F
t

0
O`2o db(s) · Nj, gX(s)P+F

t

0
OB dW(s), j(· − y(s))P.

Thus, the desired conclusion follows from the fact that

OW(t), kP :=F
t

0
OdW(s), k(· − y(s))P, t \ 0, k ¥ S(r) (3.4)

defines a cylindrical Wiener process on L2 independent of b(·). This can be
seen as follows. Since for each k ¥ Sd, OW(·), kP is a martingale with the
quadratic variation

OOOW(·), kP, OW(·), jPPPt=tOk, jP, t \ 0, k, j ¥ Sd,

W(·) is a cylindrical Wiener process in L2. It is independent of b(·) as the
joint quadratic variations satisfy

OOOW(·), kP, b(·)PPt=0, -k ¥ Sd. L

Remark 3.3. Let o \ 0 and r ¥ (d/2, d/2+G(c)). Note that for any
v ¥ Rd,

S(r) … D((−A+oD)g) 5 D((v · N)g).

In fact, see Appendix B, S(r) is a core of (−A+oD)g and for k ¥ S(r)
one has

( − A+oD)g k=J−r( − A+oD)(Jrk),

(v · N)g k=−J−rv · N(Jrk).

Theorem 3.1 states therefore that gX(·) can be treated as a weak solution to
the following stochastic evolution differential equation

“gX

“t
(t, x)=( − A+oD) gX(t, x)+gX(t, 0) · NgX(t, x)

+BẆ(t, x)+`2o ḃ(t) · NgX(t, x), t \ 0, x ¥ Rd, (3.5)
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with the initial condition gX(0)=X. In particular, go(·) solves (3.5), with
the initial value V(0).

Furthermore, if (A, V(·), x(·)) is a weak solution to (1.1), then the
corresponding quasi-Lagrangian process (3.1) satisfies

“g

“t
(t, x)=−Ag(t, x)+g(t, 0) · Ng(t, x)+BẆ(t, x), (3.6)

with the initial condition g(0)=V(0). An analogous equation can be
derived for the e-regularization of the quasi-Lagrangian process, see ref. 14.
Namely, ge(·) solves

“ge

“t
(t, x)=−Age(t, x)+ge(t, 0) · Nge(t, x)+BeẆ(t, x), (3.7)

with ge(0)=Ve(0).

4. PATHWISE UNIQUENESS OF EQ. (3.5)

Theorem 4.1. Let c > 0, o \ 0, and let s ¥ [0, 1) be such that
2c+s > 1. Let r ¥ (0, c/2). Suppose that we are given filtered probability
spaces A, Ab, a cylindrical Wiener process W(·) over A, a standard
d-dimensional Brownian motion b(·) over Ab and an F0-measurable
random element X in Cs

r. Then, there is at most one solution to (3.5) with
the initial value X, in the class of all (Ft é Fb

t )-adapted processes g(t),
t \ 0 with continuous Cs

r-valued trajectories.

Note that for any r ¥ (0, c/2), there is h ¥ (d/2, d/2+G(c)) such that
Cr … L2

h. In fact any h ¥ (d/2+2r, d/2+G(c) has the desired property.
By Cr we denote the space consisting of all continuous mappings

k: Rd
Q Rd é Rd such that

||k||Cr
:=sup

x ¥ R

| k(x)|Rd é Rd Jr(x) < ..

Throughout this section we assume that r, o, s, and X are as in
Theorem 4.1, and that gX(·) and ḡX(·) are two solutions to (3.5) with con-
tinuous trajectories in Cs

r starting from X. The proof of the theorem will be
based on the following three lemmas.

Lemma 4.2. Let S(·) be the semigroup on L2 generated by − A.
Then,
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(i) for any t \ 0, S(t) is a bounded linear operator acting from
(Sd, ||·||Cr

) into (Cr, ||·||Cr
). Thus, by virtue of Remark 2.1, for any t \ 0,

S(t) has a unique extension to a bounded operator on Cr. We denote this
extension also by S(t).

(ii) for any t > 0, NS(t) is a bounded linear operator from Cs
r into Cr.

Moreover, for any T > 0 there is a constant C < . such that

||NS(t)||L(Cs
r, Cr) [ Ct−1 − s

2c , t ¥ (0, T]. (4.1)

Due to rather technical nature of the lemma we postpone its proof till
Appendix A.

Lemma 4.3. Assume that w(·) is an adapted process with continu-
ous trajectories in Cs

r which satisfies

“w
“t

(t, x)=( − A+oD) w(t, x)+ḡX(t, 0) · Nw(t, x)

+`2o ḃ(t) · Nw(t, x), t \ 0, x ¥ Rd,

w(0, x)=0, x ¥ Rd.

(4.2)

Then w=0.

Proof. Let w(·, ·) be a solution to (4.2). Write

z(t, x)=w(t, x − `2o b(t)).

Let k belong to the core S(r) of (−A+oD)g, see Remark 3.3. Write

Oz(t), kP :=F
Rd

z(t, x) · k(x) dx.

In the same manner we define Ow, k(·+`2o b(t))P. Then

dOz(t), kP=dOw(t), k(·+`2o b(t))P

=Odw(t), k(·+`2o b(t))P+Ow(t), dk(·+`2o b(t))P

+2oONw(t), Nk(·+`2o b(t))P dt

=O− Aw(t)+g(t, 0) · Nw(t), k(·+`2o b(t))P dt.
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Hence z is a solution to

dz(t)
dt

=−Az(t)+ḡX(t, 0) · Nz(t), z(0)=0.

Let h ¥ (2r+d/2, d/2+G(c)). Note that then Cr is embedded into L2
h.

Since S(·) is a C0-semigroup on L2
h, and thanks to (4.1),

F
t

0
||ḡX(s, 0) · N[S(t − s) z(s)]||L2

h
ds

[ sup
0 [ s [ t

(|| z(s)||Cs
r

|ḡX(s, 0)|) F
t

0
||NS(t − s)||L(Cs

r, Cr) ds <+..

We conclude therefore that z(·) is a mild solution, that is

z(t)=F
t

0
ḡX(s, 0) · N[S(t − s) z(s)] ds.

From this point on we are able to proceed with the argument used in the
proof of Lemma 3 from ref. 14, which leads to the desired conclusion that
z(·) — 0. L

Lemma 4.4 below was formulated not explicitly and in a little weaker
form in ref. 14, see the proof of Lemma 3 from ref. 14.

Lemma 4.4. The process v :=gX − ḡX satisfies

v(t, x)=F
t

0
v(s, 0) · Y(t, s, x+F

t

s
ḡX(r, 0) dr+`2o (b(t) − b(s))) ds

(4.3)

for all (t, x) ¥ [0, +.) × Rd, where

Y(t, s, x) :=[NS(t − s) gX](s, x), t > s \ 0, x ¥ Rd.

Proof. Clearly, v is a (weak in the PDE sense) solution to

“v
“t

(t, x)=( − A+oD) v(t, x)+v(t, 0) · NXg(t, x)

+ḡX(t, 0) · Nv(t, x)+`2o ḃ(t) · Nv(t, x), t ¥ [0, T], x ¥ Rd,
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with the initial condition v(0)=0. Let v̄ be given by the right hand side of
(4.3). We will show that v̄ satisfies

“v̄
“t

(t, x)=( − A+oD) v̄(t, x)+v(t, 0) · NgX(t, x)

+ḡX(t, 0) · Nv̄(t, x)+`2o ḃ(t) · Nv̄(t, x), t ¥ [0, T], x ¥ Rd,
(4.4)

with v̄(0)=0. This will complete the proof of the lemma. For, the differ-
ence w=v − v̄ satisfies (4.2) and has the desired regularity properties. Thus
by Lemma 4.3, w(·) — 0 and consequently v=v̄. In order to show (4.4) we
proceed as in the proof of the previous lemma. We take a test function
k ¥ S(r) and write

Y(t, s) :=F
t

s
ḡ(r, 0) dr+`2o (b(t) − b(s)).

Then,

Ov̄(t), kP=F
t

0
Ov(s, 0) · NS(t − s) gX(s), k(· − Y(t, s))P ds

and using Itô’s calculus one obtains

dOv̄(t), kP=Ov(t, 0) · NgX(t), kP dt

−5F
t

0
Ov(s, 0) · NAS(t − s) gX(s), k(· − Y(t, s))P ds6 dt

+F
t

0
Ov(s, 0) · NS(t − s) gX(s), dtk(· − Y(t, s))P dsŒ

dtk(· − Y(t, s))=o Dk(· − Y(t, s)) dt − ḡX(t, 0) · Nk(· − Y(t, s)) dt

− `2o db(t) · Nk(· − Y(t, s)).

and (4.4) follows. L

Proof of Theorem 4.1. By Lemma 4.4, v(·)=ḡX(·) − gX(·) satisfies

|v(t, 0)| [ F
t

0
|v(s, 0)| K(t, s) ds, (4.5)
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where

K(t, s)=:[NS(t − s) gX] 1 s, F
t

s
ḡX(r, 0) dr+`2o (b(t) − b(s))2:.

Clearly, for any f ¥ Cr we have |f(0)| [ ||f||Cr
. Moreover, using an ele-

mentary inequality

1
1+|x − y|2 [

(1+|y|)2

1+|x|2 , x, y ¥ Rd

we obtain

||f(·+y)||Cr
[ (1+|y|)2r ||f||Cr

.

Hence,

K(t, s) [ 11+F
t

s
|ḡX(r, 0)| dr+`2o |b(t) − b(s)|2

2r

||NS(t − s) gX(s)||Cr

[ 11+F
t

s
|ḡX(r, 0)| dr+`2o |b(t) − b(s)|2

2r

× ||gX(s)||Cs
r

||NS(t − s)||L(Cs
r, Cr).

Taking into account the continuity of the real valued processes ||gX(·)||Cs
r
,

ḡX(· , 0), b(·), and v(· , 0) for any fixed T > 0 there is a random variable CT

satisfying P(CT <+.)=1 such that

K(t, s) [ CT ||NS(t − s)||L(Cs
r, Cr), -0 [ s < t [ T, P-a.s., (4.6)

Thus the desired conclusion follows from Lemma 4.2 and Gronwall’s
inequality. L

At the end of this section we formulate a corollary of Theorem 4.1
that asserts the uniqueness of the law of the solution to (3.5). Consider any
Hilbert space H such that the embedding L2 into H is of the Hilbert–
Schmidt class. Let

C :=C([0, .); Cs
r), W=C([0, .); Rd) × C([0, .); H). (4.7)

Using the Yamada–Watanabe result, see, e.g., refs. 15–17 which says
that the pathwise uniqueness implies law uniqueness we obtain the follow-
ing corollary to Theorem 4.1.
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Corollary 4.5. Assume that c, s, o, and r are as in Theorem 4.1. Let
gX(·), ḡXa (·) be two solutions to (3.5) driven by possibly different Wiener
processes (b(·), W(·)), ( b̄(·), Wa (·)) and defined on a possibly different
filtered probability spaces. Assume that gX(·), ḡXa (·) have continuous
trajectories in Cs

r. Let Q and Qa be the laws of (gX(·), b(·), W(·)) and
(ḡXa (·), b̄(·), Wa (·)) on C×W. If L(X)=L(Xa ), then Q=Qa and, in par-
ticular we also have L(gX)=L(ḡXa ).

5. PROOF OF THEOREM 2.5

Proof of the Uniqueness. Let (A, V(·), x(·)) and (Aa , Va(·), x̄(·))
be any two weak solutions to (1.1), and let g(t, ·)=V(t,·+x(t)) and
ḡ(t, ·)=Va(t,·+x̄(t)), t \ 0 be the corresponding quasi-Lagrangian envi-
ronment processes. Clearly if c=0, then necessarily a > 2 and consequently
the Eulerian velocity field is spatially Lipschitz. Thus we need to consider
only the case c > 0.

Let us fix r ¥ (0, c/2). Since 2c+a > 2 and a ¥ (1, 2) we can find
s ¥ [0, a − 1) such that 2c+s > 1. Note that g(·) and ḡ(·) have continuous
trajectories in Cs

r. Indeed, taking into account the definition of the quasi-
Lagrangian environment process it is enough to observe that V(·) and Va(·)
have continuous trajectories in Cs

r. This is however a direct consequence of
Proposition 2.2.

Clearly all the laws L(g(0)), L(V(0)), L(Va(0)), and L(ḡ(0)) are
identical. By Theorem 3.1, g(·) and ḡ(·) are solutions to (3.6) driven by
possibly different Wiener processes. However, by Corollary 4.5, we have
L(g)=L(ḡ). Taking into account (3.1) and (3.2) we obtain L(V, x)=
L(Va, x̄). L

Proof of the Existence and Weak Convergence of o-Regulariza-
tions. Given o > 0 we assume that xo(·) is defined on a probability space
B=A é Ab and satisfies (1.5) with a standard Brownian motion b(·),
defined over Ab, and the field V(·), defined over A, corresponding to a
stationary solution to (2.1) driven by a cylindrical Wiener process W(·).
go(·) is the corresponding quasi-Lagrangian process. According to
Theorem 3.1 the quasi-Lagrangian process satisfies (3.5) driven by a
certain cylindrical Wiener process Wo(·). Consider any Hilbert space H
such that the embedding L2 into H is of the Hilbert–Schmidt class. Let
r ¥ (0, c/2), T > 0 and

ZT=C([0, T]; Rd) × C([0, T]; Cr) × C([0, T]; Cr)

× C([0, T]; H) × C([0, T]; Rd).
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We denote also by Z the respective space defined using a semi-definite
interval [0+.). Let Mo :=(xo(·), go(·), V(·), W(·), b(·)) for any o ¥ (0, 1).

We will show that the family of the laws (L(Mo))o ¥ (0, 1) is tight in Z.
According to ref. 18 it suffices only to show that the family of the laws
(LT(Mo))o ¥ (0, 1) is tight in ZT for any T > 0. To achieve that goal, it is
enough to show that the laws LT(xo(·), go(·)), o ¥ (0, 1] are tight in

Z̃T=C([0, T]; Rd) × C([0, T]; Cr).

We can further simplify the goal taking into account the fact that V(·)
is a random element of C([0, T]; Cr). It suffices therefore to verify that
the family LT(xo(·)), o ¥ (0, 1] is tight in C([0, T]; Rd). Note first that,
thanks to Proposition 2.2 and elementary properties of homogeneous
Gaussian measures, see, e.g., Theorem 5.2 on p. 120 of ref. 19, there exist a
constant a > 0 and a random variable CT such that OeaC2

TP < . and

|xo(t)| [ `2o sup
0 [ t [ T

|b(t)|+CT
11+F

t

0
|xo(s)| ds2 .

Hence, in particular for any q > 0,

OEb[ sup
(o, t) ¥ (0, 1) × [0, T]

|xo(t)|q]P < ..

In consequence, for any E > 0 there exists a sufficiently large M > 0 such
that

OPb( sup
o ¥ (0, 1)

yM, o [ T)P < E/2, (5.1)

where yM, o :=inf[t \ 0 : |xo(t)| \ M]. Let

A(d, +) :=[ sup
o ¥ (0, 1), t, s ¥ [0, T]

0 [ t − s [ d

|xo(t) − xo(s)| > +]. (5.2)

Then, (5.1) implies that for any d and + > 0 we have

OPb(A(d, +))P

[ OPb(yM, o < T)P+OPb(A(d, +), yM, o \ T)P

[ E/2+OPb(`2 sup
t, s ¥ [0, T]
0 [ t − s [ d

|b(t) − b(s)|+2 d sup
t ¥ [0, T], |x| [ M

|V(t, x)| > +)P
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and tightness follows upon an elementary application of ref. 20, p. 55,
Theorem 8.2 and the estimates of the tails of the supremum of a stationary
Gaussian field provided by Theorem 5.2 on p. 120 of ref. 19.

According to Skorochod’s representation theorem there exist Z-valued
random elements

M2 o=(x̃o(·), g̃o(·), V2 o(·), W2 o(·), b̃o(·)), o ¥ (0, 1],

M2=(x̃(·), g̃(·), V2 (·), W2 (·), b̃(·)),

such that (M2 o)o ¥ (0, 1) and M2 are defined on the same probability space B̃,
L(Mo)=L(M2 o), o ¥ (0, 1] and M2 o converges almost surely to M2 . We
will show that (B̃, V2 (·), x̃(·)) is a weak solution to (1.1). First note that the
laws of (V(·), W(·)) and (V2 o(·), W2 o(·)) are the same. Thus (V2 (·), W2 (·))
has the same law as (V(·), W(·)), and consequently V2 (·) is a stationary
solution to (2.1) driven by the cylindrical Wiener process W2 (·). Next,
passing to the limits, as o a 0, in

g̃o(t, x)=V2 o(t, x+x̃o(t)), t \ 0

and

x̃o(t)=F
t

0
g̃o(s, 0) ds+`2o b̃o(t), t \ 0

we obtain the desired conclusion

x̃(t)=F
t

0
g̃(s, 0) ds=F

t

0
V2 (s, x̃(s)) ds, t \ 0.

Finally, the convergence L(xo(·)) 2L(x(·)), as o a 0, follows from the
uniqueness of the limit. L

Weak Convergence of the e-Regularizations. In light of the
argument from the previous part it suffices only to show tightness of
LT(xe(·)), e ¥ (0, 1] for any T > 0. Define a random variable

CT, e := sup
t ¥ [0, T], x ¥ Rd

|Ve(t, x)| J1/2(x).

By virtue of Theorem 5.3, p. 120 of ref. 19 there exists a constant a > 0
such that we have

sup
e ¥ (0, 1]

OeaC2
T, eP <+..
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We can repeat now the argument used in the previous section to show that,
with the same notation as in (5.2),

lim
d a 0

sup
e ¥ (0, 1)

P(xe(·) ¥ A(d, r))=0

for any r > 0 and tightness follows. L

We end this section with a pathwise existence result for the solutions
of (3.6). This observation follows along the lines of the celebrated Yamada–
Watanabe theorem. Assume that 2c+a > 2. Let s ¥ [0, a − 1) be such that
2c+s > 1. Using the same arguments as in the proof of Theorem 2.5 we
obtain the existence of a weak solution gX(·) to (3.6) starting from X ¥ Cs

r.
From Theorem 4.1 we have uniqueness of pathwise solutions to (3.6)
starting from a given X. Thus a simple adaptation of the Yamada–
Watanabe argument, see, e.g., Theorem 4.1.1 on p. 149 of ref. 15, leads to
the following pathwise existence result for the solutions of (3.6).

Theorem 5.1. Let 2c+a > 2 and r ¥ (0, c/2). Given a filtered
probability space A, a cylindrical Wiener process W(·), and V(·), as in
Definition 2.4, there exist a s ¥ [0, a − 1) and an (Ft)-adapted Cs

r-valued
process g(·) with continuous trajectories satisfying (3.6) with the initial
condition g(0)=V(0).

APPENDIX A

Proof of Lemma 4.2. Recall that c > 0. Let C1 be the space of all
continuously differentiable, bounded with derivatives mappings acting
from Rd into Rd. The space C1 is equipped with the standard norm ||·||C1.
Given r \ 0 we define

C1
r :={k: Rd

Q Rd: kJr ¥ C1}.

We equip C1
r with the norm ||k||C1

r
:=||kJr ||C1.

Let T > 0. We will show that

-r ¥ (0, c) ,C: sup
t ¥ (0, T]

||S(t)||L(Cr, Cr) [ C, (A.1)

-r ¥ (0, 1/2+c) ,C -t ¥ (0, T]: ||NS(t)||L(Cr, Cr) [ Ct− 1
2c, (A.2)

and

-r ¥ (0, c) ,C: sup
t ¥ (0, T]

||NS(t)||L(C1
r, Cr) [ C. (A.3)
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To this end we set

pc(x, t)=F
Rd

e−m |k|2c te ik · x dk=t− d
2c pc(xt−1/(2c), 1) (A.4)

and

qc(x, t)=Npc(x, t)=i F
Rd

ke−m |k|2c te ik · x dk=t−d+1
2c qc(xt−1/(2c), 1). (A.5)

Then, by ref. 21, there are a constant C1 < . such that |x|d+2c |pc(x, 1)|
Q C1, as |x| Q . and a constant C2 < . such that |x|d+2c+1 |qc(x, 1)| Q C2,
as |x| Q .. Hence, as pc(· , 1) and qc(· , 1) are continuous, there is a con-
stant C3 < . such that

|pc(x, 1)| [ C3 Jd/2+c(x) and |qc(x, 1)| [ C3 J(d+1)/2+c(x) for x ¥ Rd.

We have

|S(t) k(x)|=: F
Rd

k(y) pc(x − y, t) dy:

[ F
Rd

|k(y)| Jr(y) |pc(x − y, t)| J−r(y) dy

[ ||k||Cr
F

Rd
|pc(x − y, t)| J−r(y) dy

[ C3 t− d
2c ||k||Cr

F
Rd

Jd/2+c((x − y) t−1/(2c)) J−r(y) dy.

Thus,

||S(t) k||Cr
[ C3 I(t) t− d

2c ||k||Cr
,

where

I(t)=sup
x ¥ Rd

Jr(x) F
Rd

Jd/2+c((x − y) t−1/(2c)) J−r(y) dy.

Similarly, we have

||NS(t) k||Cr
[ C3 J(t) t−d+1

2c ||k||Cr
,
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where

J(t)=sup
x ¥ Rd

Jr(x) F
Rd

J(d+1)/2+c((x − y) t−1/(2c)) J−r(y) dy.

Clearly,

F
Rd

Jd/2+c((x − y) t−1/(2c)) J−r(y) dy

=t
d
2c F

Rd
Jd/2+c(xt−1/(2c) − y) J−r(yt1/(2c)) dy.

Thus,

I(t)=t
d
2c sup

x ¥ Rd
F

Rd

(1+t1/c |y|2)r

(1+|x|2)r (1+|xt−1/(2c) − y|2)d/2+c
dy

=t
d
2c sup

x ¥ Rd
F

Rd

(1+t1/c |y|2)r

(1+t1/c |x|2)r (1+|x − y|2)d/2+c
dy

=t
d
2c sup

x ¥ Rd
F

Rd

(1+t1/c |x+y|2)r

(1+t1/c |x|2)r (1+|y|2)d/2+c
dy.

Using the estimate

(1+t1/c |x+y|2) [ 2(1+t1/c |x|2)(1+t1/c |y|2)

we conclude

I(t) [ 2t
d
2c (1+t1/c)r F

Rd
Jd/2+c − r(y) dy.

Similarly, we have

J(t) [ 2t
d
2c (1+t1/c)r F

Rd
J(d+1)/2+c − r(y) dy,

and the desired conclusion follows from the integrability of Jd/2+c − r for
r < c and J(d+1)/2+c − r for r < 1/2+c. Estimate (A.3) follows immediately
from the integration by parts formula, and from the equivalence of the
norm ||·||C1

r
and |||·|||C1

r
given by

|||k|||C1
r

:=||k||Cr
+sup

x ¥ Rd
|Nk(x)|Rd À Rd Jr(x), k ¥ C1

r.
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Having shown (A.1)–(A.3) we complete the proof of Lemma 4.2 by
showing that

-s ¥ (0, 1) -r ¥ (0, c) ,C -t ¥ (0, T]: ||NS(t)||L(Cs
r, Cr) [ Ct−1 − s

2c .

To derive this from (A.2) and (A.3) it is enough to show that Cs
r is equal to

the real-interpolation space (Cr, C1
r)s, +.. This follows from the well-know

identity (C0, C1
0)s, +.=Cs

0 , see, e.g., ref. 22, and from the fact that k Q kJr

is an isomorphism between spaces Cs
r and Cs

0 , s ¥ [0, 1]. L

APPENDIX B

Assume that r ¥ (d/2, d/2+G(c)). Let S(r) be the space of all k ¥ Sd

such that 0 ¨ supp Jrk5 . Given o \ 0 denote by So the semigroup generated
by − A+oD on L2. Note that So(t)=S0(t) To(t), where To is a C0-semi-
group generated by oD, and that S0 and To commute. Then, see ref. 14,
there are unique extensions of S0 and To to C0-semigroups Sr and To, r

on L2
r. Hence, there is a unique extension of So to C0-semigroup So, r on L2

r,
and So, r(t)=Sr(t) To, r(t), t \ 0. Let us denote by − Ao, r the generator
of So, r. Our goal is to show that S(r) is a core of (Ao, r)g, and that

(Ao, r)g k=J−r( − A+oD)(Jrk) for k ¥ S(r). (B.1)

First, we note that for any h ¥ R, k W Jhk is a homeomorphizm on Sd,
and that (A+oD)(Jrk) ¥ Sd for any k ¥ S(r). Moreover, ( − A+oD)(Jrk)
¥ S(r) for anyk ¥ S(r). In fact, the mapping

S(r) ¦ k W J−r( − A+oD)(Jrk) ¥ S(r)

is bijective.
The inclusion S(r) ı D(Ao, r)g and (B.1) hold since Sd is a core

of A0, r, see ref. 14, Proposition 2.iii, and since for j ¥ Sd, k ¥ S(r),

OAo, rj, kPL
2
r
=O( − A+oD) j, JrkP=Oj, ( − A+oD)(Jrk)P

=Oj, J−r( − A+oD)(Jrk)PL
2
r
.

Similarly, for t \ 0 and k ¥ S(r) we have (So, r(t))g k=J−rSo(t)(Jrk).
Moreover, the mappings

S(r) ¦ k W J−rSo(t)(Jrk) ¥ S(r), t \ 0

are bijective. Summing up we have S(r) ı D(Ao, r)g, (B.1) and for any
t \ 0, (So, r(t))g (S(r))=S(r). Since S(r) is dense in L2

r and invariant
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with respect to (So, r)g it is a core of (Ao, r)g, see, e.g., ref. 23, Proposi-
tion 3.3.
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